Incorporating Homomorphic Reduction into
Abstract Interpretation

Vassilios A. Zoukos!'2, G. Papakonstantinou', and P. Tsanakas!

! Elec. & Comp. Eng. Dept.
National Technical University Athens,
Zographou Campus, GR-15770
Athens, Greece.
e-mail: {zoukos,papakon,panag}@softlab.ece.ntua.gr
2 Tntracom S.A.
Access & Transmission Dept.
Markopoulou Ave. 19002 Peania, Greece.
e-mail: vzouQintracom.gr

Abstract. It is well known that a major obstacle to model-checking is the
state-space explosion problem. To overcome this problem, various techniques
for systems’ abstractions have been proposed. While these techniques seem to
be unrelated, they share a common background: the general theory of abstract
interpretation. In the field of automata-theoretic formal verification theory, ho-
momorphic reduction has been proposed as an abstraction technique to make
the verification process tractable. We show that homomorphic reduction is a
special application of abstract interpretation to trace semantics of a system
comprised of coordinating processes.

Key words: Model-Checking; Abstract Interpretation; Homomorphic Reduc-
tion.

1 Introduction

This report, comes out as a result of a study aimed to the foundation of a concrete
theoretical background behind the abstraction of a transition system.

Presently, the quest for application of abstraction techniques to various transition
systems, has been done a rapidly expanding field of research. The underlying motivation
of this research is system’s formal verification.

Without going into details, formal verification of an industrial size transition sys-
tem, faces a major obstacle: the so-called state-space explosion problem. After years of
research and experience, it has become now widely acceptable that the every promis-
ing technique for alleviating this problem, it is likely to be based on abstractions of
system’s model.

Roughly speaking, with the term “abstraction” of a system’s model we mean the
creation of an “approximate” model in such a way that the set of its behaviors is a
superset of the “concrete” behaviors.

i

History The idea of the abstraction for a transition system exists in different appli-
cation areas of computer science. It first appearance — to our best knowledge — is at
the field of compilers construction. Its application aims to the a-priori determination
of programs run-time properties under the general term static program analysis. This
technique in essence, uses computers to detect program faults.

The application of this technique — to program computers such that they can analyze
the programs that will execute — is a very difficult task. This difficulty comes from
undecidability and complexity problems.

To overcome this difficulty, someone has to make reasonable compromises which
basically constitute “approximations” of system’s possible behaviors. Such an approxi-
mate method is the abstract interpretation. Its first public appearance is in 1977 in the
publication of Cousot,Cousot [1].

During the 80’s, the research on the formal verification/analysis of communication
protocols, faced again with the problem of handling the state-space explosion produced
from the parallel composition of concurrent programs. The solution proposed to get
around this problem was to conduct the verification on “approximate” system models
with tractable state space through reduction mappings. This technique appeared in
Kurshan’s publication [6] in 1987 under the term homomorphic reduction accompanied
with a practical implementation in his formal verification tool COSPAN.

While the techniques of abstract interpretation and homomorphic reduction evolved
through different origins, and up to now do not refer each other, they share the same
mathematical background. We will prove in this paper, that the approximation of
transition systems through reduction mappings, is in fact a special case of abstract
interpretation applied to labeled transition systems.

Organization The rest of the paper is organized as follows:

In Section 2. we review the mathematical preliminaries and describe in a semi-formal
way the basic concepts related to formal verification of transition systems, homomor-
phic reductions and abstract interpretation.

In Section 3. we give the formal definition of the Galois connection and state its
most useful properties. We conclude this section with the properties of a special case
of Galois connections: those between two Boolean algebras.

Finally, we relate these special Galois connections between Boolean algebras with
Kurshan’s duality between language homomorphisms and Boolean algebras homomor-
phisms. Due to space limitations we do not present the proofs for the stated proposi-
tions!

2 Preliminaries, Basic Concepts

In the rest of this paper we will use the following notation and terminology. A poset is
the pair (P,C) where C is a partial order. With C y we mean z C y and z # y. We
say that y covers x in the partial order Ciff t Cy,x #yand 2z C 2,2 Cy = 2 = x.
If X C P, then the down-set denoted with |Y is the set {y € P | (Jz € X) : y C z}

! These proofs are available by request at: zoukos@softlab.ece.ntua.gr.

while the up-set is the 1X = {y € P | (3z € X) : y J x}. We use UX, and MNX, for
the least upper bound (1ub) of X in P, and the greatest lower bound (glb) of X in P
respectively if these exist. The minimum (resp. mazimum) element of the poset P is
denoted with L (resp. T).

A poset (L, C) is a lattice iff for any z,y € L the U{z,y} and M{z, y} exist. A lattice
(L,E) is complete if UX and MX exist for every X C L. If L is a lattice with L, then
the set A(L) of its atoms has as members the elements of L covering L.

A lattice is distributive iff: (Vz,y,z € L) x N (y U z) = (zMy) U (z M z). Suppose
that L is a lattice with L, T. The complement of x € L is the element y such that:
My =1 and zUy = T. If x has a unique complement we denote it with ~ x.

Definition 2.1 [3, §7.2] A lattice L is a Boolean lattice or a Boolean algebra iff:

1. L is a distributive.
2. Lhas T, L.
3. Every element x € L has a unique complement ~ x € L.

For the Boolean algebras we use a slight modified notation: We denote with +, *
the operations U and M, and with 0, 1 the elements | and T respectively.

Every finite Boolean algebra is atomic (i.e. the set A(L) exists and every element
x € L can be expressed as the lub of a subset of A(L)). In this paper, when we refer
to Boolean algebra, we mean a finite one.

Definition 2.2 [3, §7.4] Given a Boolean algebra L and a subset K of L, K is a
subalgebra of L if it is closed with respect to +,*,~ and {0,1} C KN L.

Definition 2.3 [5, §2.1.7] For the Boolean algebras L, L' the mapping :
h:L—L
is a homomorphism iff:

Wz +y) = h(z) + h(y)
h(z *y) = h(z) * h(y)
h(~z) =~ h(z).

A monomorphism is an 1-1 homomorphism, while an isomorphism is a monomorphism
onto. In the case where A is isomorphism we write L = L'. If L = L' and h isomorphism,
we say that h is an automorphism.

If L is a Boolean algebra and L; a subalgebra of L, we define the projection of L to
L; the mapping:

Iy, : L — L, I (z)=u(({z}NAL))NAL)).

Labeled Transition Systems A possible model for discrete dynamic systems, is the
model of labeled transition systems (LTS) where the system’s transitions are labeled
by a subset of the “observable” events. In a formal way, we can say that the semantic
basis of LTS are edge-labeled directed graphs where the labels are elements of an atomic
Boolean algebra L. Such an approach to model systems of coordinating processes is
taken by Kurshan (cf. [5, Ch. 3]) in his automata-theoretic verification theory.

Formal Verification With the term “formal verification” of a program we mean
mathematical proofs about program’s behaviors. While in general, formal verification
can be viewed as theorem-proving in a given logic, practically spans a spectrum in
which expressive power trades off against automatability.

Kurshan’s approach to formal verification has as semantic basis the w-automata.
In this framework, —which is a form of model checking — the system is modelled by an
automaton P, and the “property” or specification to be checked by the automaton T,
and the test is whether the set of the “behaviors” of P is contained in the set of the
behaviors of T'. In formal notation:

L(P) C L(T).

This test is called language containment test and the sets L(P),L(T) are subsets of
(X%)« (the set of infinite sequences of X%, where X% is the input/output alphabet of
the system).

The language containment test can be done either by explicit state enumeration al-
gorithms either by implicit (BDD-based) algorithms. In both cases the check requires
an exhaustive search of the reachable state space of the system. Since P is usually
expressed as a set of coordinating components P = ®P;, the search state space gen-
erally increases exponentially to the number of its components (this is the state-space
explosion problem).

Homomorphic Reduction One technique to get around state-space explosion, dur-
ing the language containment test, is homomorphic reduction. Both the system P and
the property T are mapped to the “abstract” system P’ and property T" respectively,
through a language homomorphism & : (X%)“ — (X%)¢ (here X% is the “concrete” al-
phabet and X* is the “abstract” one) and the language containment check is performed
to the abstract models:

L(P") C £(T").

In the case where the mapping & satisfies? certain conditions between the languages of
P,P')T, T', then the validity of the language containment test in the abstract models,
implies the validity of the language containment test in the concrete models. In this
case, we say that the abstract models P',T' constitute a homomorphic reduction of
PT.

The mapping @ is defined as follows:

Let the Boolean algebras Lf = P(X%), L} =~ P(X*) where X% X* are the in-
put/output alphabets of the concrete and abstract models respectively,

h: A(LY) — A(LY),
an arbitrary map and define:
@1 A(LF)Y — A(LF),

% For a formal exposition on the subject see [5, §8.5]

~

by ®((xg,---)) = (h(xo),...). Then & is said to be a language homomorphism with
support h. @ also extended naturally to w-languages: subsets of A(L)%.

Note that the mapping @ “abstracts” the input/output sequences of the concrete
model. This is a case gf trace semantics approximation.

The support map h is related to a unique Boolean algebra homomorphism A as we
will see next.

Abstract Interpretation We will informally describe the basic ideas behind abstract
interpretation. For a formal treatment see [2],[1].

Abstract interpretation is a method for designing approximate semantics of pro-
grams which can be used to gather information about programs in order to provide
sound answers to questions about their run-time behaviors.

Theoretically, the purpose of abstract interpretation is to construct hierarchies of
semantics specifying at different levels of abstraction the behavior of programs. In
practice, abstract interpretation, helps in the implementation of tools for automatic
analysis statically dynamic properties of programs.

The abstract interpretation mathematical framework is based on the use of Galois
connections to establish the relationship between the domain of “concrete” or “exact”
properties to the domain of “abstract” or “approximate” properties.

The intuition is that the abstract domain is a representation of some approximate
properties of the values of the concrete domain. Both on the concrete and on the
abstract domain, a partial order relation describing the relative precision of the values
is defined: z C y means that x is more precise than y.

3 Galois Connections
In the next, we put the formal definitions of Galois connection and insertion.

Definition 3.1 The pair of mappings {@,v) € (L% — L*) x (L* — LF), between the
posets (Lf,C), (L, C), is a Galois connection® iff one of the following two equivalence
conditions hold:

L. pEr(g) & al) Ca.
(i) pCp' = ap) Cal)AgCq¢ = (@) Cy(d),p,p € L, q,¢ € LF,
" (ii) pC v o afp) Aaor(g) Cg, p€Lfge LF

In a Galois connection {a,v) € (Lf — L*) x (L* — L%), a and v constitute its ab-
straction mapping and concretization mapping respectively. In the rest of the paper, for
any pair of functions (f, g) of a Galois connection the following convention is adapted:
f will be the abstraction mapping and g the concretization mapping.

Definition 3.2 A Galois connection {(a,7) € (Lf — L*) x (L* — L), is an insertion
iff:

(Vg € L) ¢ = a0 v(q).

3 Also called and semi-dual Galois correspondence

Fig. 1. A graphical representation of a Galois connection {«,v) between L, L¥.

The following are some well-known properties of Galois connections and insertions
that will be useful later on.

Proposition 3.1 Let the Galois insertion: {(a,v) € (L¥ — L*) x (L* — L#). Where
L5 LY are posets. Then:

1. The mapping v is a monomorphism (or 1-1).

2. The mapping a is onto.

3. The mapping v is an embedding of (L*,C) into (L%,C). (i.e. (Vq,q' € L¥) ¢ C
¢ < (@) C(d).)

Proposition 3.2 [3, Ch. 11 Ex.11.3(iv)] Let: {a,v) € (LF — L*) x (L* — LF) be a
Galois connection where LY, L' are posets. Then:

1. a preserves the 1ub’s. (i.e. if for X C L the UX exists, then Ua[X] ezists in L
and a(LUX) = Ua[X].)

2. v preserves the glb’s. (i.e. if for Y C Lt the MY exists, then My[Y] exists in L
and v(NMY) =ny[Y].)

Proposition 3.3 [/, §2.1 (iii)] Let the Galois insertion: {a,v) € (L — L¥) x (L} —
L), Where (L%,C) is a complete lattice and (L*,C) is a poset. Then (L¥,C) is a
complete lattice.

Proposition 3.4 [{, §2.1 (iv)] Let the posets: (L%, C), (L}, C) and the mapping o €
L% — L' which preserves the 1lub’s. In addition, for all y € L} we assume that U{x €
L | o) C y} eists. If we define: v € L} — LF as v(y) = U{x € L | a(z) C y}. Then
the pair {a,~) is a Galois connection. Moreover, if a is onto, then {a,v) is a Galois
insertion.

Proposition 3.5 [4, §2.1 (v)] In any Galois connection, one of two functions uniquely
determines each other as follows:

a(z) = My~ [z} ny[LY]]
Y(y) = Ua~ [|{y} NeoLF]]

Galois Connections between Boolean Algebras

When the posets L, L! are Boolean Algebras, we can construct special types of Galois
connections where the concretization function is a homomorphism. Proposition 3.6
states the necessary conditions for this.

Proposition 3.6 Given two Boolean algebras L', L' and a mapping h: Ll — Lt
preserving the lub’s such that: h[A(LF)] C A(LY), then the pair (h,h) where h(z) =

h='[1{z} N h[L®)], is a Galois connection and moreover, the function h is a homo-
morphism. If hJA(L")] = A(L!), then h is a monomorphism.

Proposition 3.7 Given a Galois connection (h,h) € (L' — L) x (L! — L") where
L8, L¥ are Boolean algebras, such that the concretization function h is a homomorphism,
then the abstraction function h has the following properties:

1. h(0) = 0.

2. Wz +y) = h(z) + h(y).
3. & Cy = h(z) Ch(y).
4. h(z *y) C h(z) * h(y)

Proposition 3.8 Let the Galois connection (h,h) € (L! — L*) x (L! — L) where
LE I} are Boolean algebras, and the concretization function h is a monomorphism.
Then in addition to (1, 2, 3, 4) of the Proposition 3.7, the abstraction function h has
the the following properties:

>
—~~
:~>:

1.
C h(~ z).
id.

1.
2. (
3.

;->
|| &

The abstraction function A in the case of Proposition 3.8, is a projection Iy, : LF —
L' where L' = h[L*] the Boolean subalgebra of L* isomorphic to L¥.

4 Discussion

The language homomorphism @ is defined through its support mapping h: A(LE) —
A(L?). If we extent linearly h to L as h : L* — L! then h satisfies all the conditions of
Proposition 3.6 to be the abstraction mapping of a Galois connection (ﬁ, h) between the
Boolean algebras L, Lf. In this case the concretization mapping h is a homomorphism.
This remark, forms the mathematical basis for the theory of the duality between lan-
guage homomorphisms and Boolean algebra homomorphisms and puts homomorphic
reduction inside the framework of abstract interpretation.

Comparing the results in the previous section with Kurshan’s development in [5,
Ch.4], we can easily see that Proposition 3.6 is a restatement of Corollary 4.2.15 and
Theorem 4.2.9. Proposition 3.7 combines the results of Lemmas 4.2.4 and 4.2.6, and
Proposition 3.7 rephrases Theorem 4.2.7.

Homomorphic reduction in essence is an approximation of system’s trace semantics
through a language homomorphism. Such an approximation depends on the abstract
alphabet X* chosen each time.

While the incorporation of homomorphic reduction inside the framework of abstract
interpretation it is rather a “theoretical” task, it might have and practical consequences
too.

For example, current tools for formal verification of labeled transition systems such
as COSPAN, can be greatly benefited by the incorporation of static analysis techniques
in order to provide wider applicable results in industrial size application of formal
verification.

References

1. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static anal-
ysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238-252, Los Angeles, California, 1977. ACM Press, New York, NY.

2. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and
Computation, 2(4):511-547, (aug) 1992.

3. B. A. Davey and H. A. Priestley. Intruction to Lattices and Order. Cambridge University
Press, 1990.

4. Gilberto Filé and Francesco Ranzato. The powerset operator on abstract interpretations.
Theoretical Computer Science, 222:77-111, 1999.

5. R. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton Univ. Press, 1994.

6. R. P. Kurshan. Reducibility in analysis of coordination. LNCIS, 103:19-39, 1989.

